Influence of Hydroxyl Group Position and Temperature on Thermophysical Properties of Tetraalkylammonium Hydroxide Ionic Liquids with Alcohols
نویسندگان
چکیده
In this work, we have explored the thermophysical properties of tetraalkylammonium hydroxide ionic liquids (ILs) such as tetrapropylammonium hydroxide (TPAH) and tetrabutylammonium hydroxide (TBAH) with isomers of butanol (1-butanol, 2-butanol and 2-methyl-2-propanol) within the temperature range 293.15-313.15 K, with interval of 5 K and over the varied concentration range of ILs. The molecular interactions between ILs and butanol isomers are essential for understanding the function of ILs in related measures and excess functions are sensitive probe for the molecular interactions. Therefore, we calculated the excess molar volume (V(E) ) and the deviation in isentropic compressibility (Δκs ) using the experimental values such as densities (ρ) and ultrasonic sound velocities (u) that are measured over the whole compositions range at five different temperatures (293.15, 298.15, 303.15, 308.15 and 313.15 K) and atmospheric pressure. These excess functions were adequately correlated by using the Redlich-Kister polynomial equation. It was observed that for all studied systems, the V(E) and Δκs values are negative for the whole composition range at 293.15 K. And, the excess function follows the sequence: 2-butanol>1-butanol>2-methyl-2-propanol, which reveals that (primary or secondary or tertiary) position of hydroxyl group influence the magnitude of interactions with ILs. The negative values of excess functions are contributions from the ion-dipole interaction, hydrogen bonding and packing efficiency between the ILs and butanol isomers. Hence, the position of hydroxyl group plays an important role in the interactions with ILs. The hydrogen bonding features between ILs and alcohols were analysed using molecular modelling program by using HyperChem 7.
منابع مشابه
Imidazolium-based Ionic liquids on Morphology and Optical Properties of ZnO Nanostructures
ZnO nanostructures have been synthesized by a simple reflux method, using different ionic liquids, such as 1-benzyl-3-methylimidazolium bromide ([BzMIM][Br]), 1,1'-(1,4 phenylenebis (methylene)) bis (3-methyl-1H-imidazol-3-ium) bromide ([MM-1,4-DBzIM2][Br]2) and 1-phenacyl-3-methylimidazolium bromide ([PMIM][Br]), with different amount of sodium hydroxide in water. Als...
متن کاملUnderstanding the impact of the central atom on the ionic liquid behavior: phosphonium vs ammonium cations.
The influence of the cation's central atom in the behavior of pairs of ammonium- and phosphonium-based ionic liquids was investigated through the measurement of densities, viscosities, melting temperatures, activity coefficients at infinite dilution, refractive indices, and toxicity against Vibrio fischeri. All the properties investigated are affected by the cation's central atom nature, with a...
متن کاملSilylation of alcohols and phenols by HMDS in the presence of ionic liquid and silica-supported ionic liquids
In this research, different alcohols and phenols are subjected to the reaction with HMDS in the presence of ionic liquid and silica-supported catalysts. Silylation was accomplished under mild reaction conditions at room temperature in short reaction times and good to excellent yields.
متن کاملOne-pot synthesis of highly regioselective β-azido alcohols catalyzed by Brønsted acidic ionic liquids
In this protocol, 3-(2-carboxybenzoyl)-1-methyl-1H-imidazol-3-ium chloride [Cbmim]Cl and sulfonic acid functionalized pyridinium chloride [pyridine-SO3H]Cl as a new, reusable, and green Brønsted acidic ionic liquid (BAIL) catalyst were synthesized and successfully used for the one-pot ring opening of epoxide with sodium azide (NaN3) in water at room temperature. Epoxides under ring-opening easi...
متن کاملRoom Temperature Synthesis of Mequinol by Using Ionic Liquids as Homogeneous Recyclable Catalysts
For the synthesis of Mequinol (4-methoxy phenol), two acidic ionic liquids based on imidazolium cation (BMSIL and IMSIL) synthesized and characterized by FT-IR, 1H NMR, and CHNS analyses. Tan, the Baeyer–Villiger oxidation of para-anisaldehyde was studied with these ionic liquids, as the catalysts. The results showed that the BMSIL with more Brønsted acidic functions had higher c...
متن کامل